Exercise 10

In Exercises 9-12, show that the given function $u(x)$ is a solution of the corresponding Fredholm integro-differential equation:

$$
u^{\prime}(x)=e^{x}+(e-1)-\int_{0}^{1} u(t) d t, u(0)=1, u(x)=e^{x}
$$

Solution

Substitute the function in question on both sides of the integro-differential equation.

$$
\begin{aligned}
\frac{d}{d x}\left(e^{x}\right) & \stackrel{?}{=} e^{x}+(e-1)-\int_{0}^{1} e^{t} d t \\
e^{x} & \stackrel{?}{=} e^{x}+e-1-\left.e^{t}\right|_{0} ^{1} \\
& \stackrel{?}{=} e^{x}+e-1-\left(e^{1}-e^{0}\right) \\
& \stackrel{?}{=} e^{x}+e-1-e+1 \\
& =e^{x}
\end{aligned}
$$

Therefore,

$$
u(x)=e^{x}
$$

is a solution of the Fredholm integro-differential equation.

